CopyMap Manual v1.0

Author: Sebastian Zollner; szoellne@umich.edu

Basic overview

CopyMap is a hidden Markov algorithm to infer copy number variation from a sample of
hybridization intensities. The program combines the information across individuals by
estimating a transition matrix between every pair of markers using a Baum-Welch algorithm.
The algorithm consists of two steps, the first step estimates the underlying parameters, the
second step estimates carrier status in each individual based on the estimated parameters.

The algorithm used here is described in

Henrichsen CN*, Vinckenbosch N*, Zéllner S*, Chaignat E, Pradervand S, Ruedi M, Kaessmann H,
Reymond.(2009) Segmental copy number variation shapes tissue transcriptomes. Nat Genet
41:424-429

Please cite this paper if you consider the program useful.

Presently the program is still in beta testing, thus both the program and this manual are a little
rough. Thus, if you see parts of the program or this manual that could be improved upon,
please let me know.

Compiling the program

You should have downloaded a C-code with the name hmmx.c, where x is the version number.
To compile the program type:
gcc ./hmmx.c -Im -0O3 -o CopyMap

This will create an executable named copymap in the same directory. In the following we
assume that CopyMap is the name of the executable.

Technical Details

Statistical Model

The program considers the hybridization signal in each individual as one realization of a
hidden Markov model (HMM). The HMM has three hidden states, baseline (0), insertion (1)
and deletion (2). The hybridization signal for each state is a realization of the same distribution
with means (ag, a, a,) dependent of the hidden state; the program allows for different signal
distributions of this intensity. Other than classical HMMs, we do not assume an identical
transmission matrix between every pair of probes. Rather we estimate a specific transition
matrix between every pair of probes using the Baum-Welch algorithm (Baum LE, 1970).
Transition probability between 0 and 1 or 2 can be interpreted as the population frequency of
an insertion/deletion.

To reduce the number of false positives, the program can require a minimum length (option —
m) for each CNV and assign a prior probability (option — P) of each location carrying a CNV.

To infer the carriers and the locations of CNVs, the program offers two methods. Method 1 is
the classical Viterbi algorithm (Viterbi, 1967)(option -V), which will use the location specific
transition matrix to analyze each sample separately, estimating carrier status and begin and
end of each CNV independent of all other samples. Note that this method still used the
location-specific transition matrix and thus still combines evidence across individuals.
However, it allows CNV boundaries to vary between individuals. Method 2 is a consensus
method. It scans the location specific transition matrix for regions with a high probability of
transitioning into a CNV (threshold set by -t option) and calls these regions to have variable
copy number. Then the signal intensity of each individual is used to assign a probabilistic
carrier status.

Input file format:

All data used to run CopyMap is entered in a single file. In this input file, every line starting
with a hash (#) will be ignored by the program and can be used for comments. The first line of
the input file starts with a P (for parameters) followed by the number of individuals and the
number of probes for each individual, the numbers separated by a space. The input file may
then contain any of the

/ \ following lines:

#short toy example e Starting with M
P53 showing the label used for
5 probes 3 individuals missing data

L 12138 12390 12505 12945 13880 . . .

Location of the 5 probes. This e Starting with N listing
#line is optional. the names of all individuals
M 9999 e Starting with L listing

#flag for missing data. This line
#is optional

N mousel mouse2 mouse3

#Names of the three individuals Including lines L and N will
#listed below

-0.271 0.431 -0.801 0.093 0.242

the location of all probes.

make the output more

0.175 -0.118 9999 0.067 0.135 readable.
0.009 -0.370 -0.376 -0.098 0.243 Each following line consists of
\ / the hybridization intensities for

one individual in order of the
probes. If any line does not contain the specified number of probes, the program will report
an error and abort.

Running the program

CopyMap uses the command line to enter parameters and options. To run the program type
./CopyMap -optionl —option2 —option3.

A typical command would be

./CopyMap -r20 -s30 -p18000 -T4 -m5 -P0.005 -iin_chr.txt

This would analyze a dataset of 30 individuals (-s), each individual with 18000 probes (-p)
taken from an input file “in_chr.txt” (-i). The program would model hybridization intensity as a
mixture of two normal distributions (-T4), setting a minimum length for each CNV of 5 (-m)
and a prior of variable copy number of 0.005 (-P). The program would run 20 rounds of the
Baum-Welch forward-backward algorithm (-r). A list of all options is given in the table below.

Runtime estimates

The runtime of the program depends on five parameters, the number of EM steps, the sample size, the
number of probes, the minimum length of each CNV and the minimum distance between CNVs, and it
scales roughly linearly with each of those parameters. The table below shows a couple of typical
runtimes on a single 2.33 MHz processor with 16 Mb of memory.

EM steps Sample size probes Minimum Runtime
length

30 100 10,000 5 9 min

30 100 10,000 10 20 min

30 500 10,000 5 40 min

30 100 50,000 5 40 min

Command line options

Generally command line options come in two flavors, flags (F) and input parameters (P). Flags indicate
that the program should run in a certain way, for example model genotyping error. Parameter values
are put in directly after the line option, without a space in-between. More detailed description of
some input parameters is given below.

Input parameters:

Sample Size

Number of probes for each individual

Number of repeat measurements for each probe

Type (distribution) of hybridization signal

§—|Z'DV’

Code for missing data in the input file

V||| TO|TO |0

Name of the input file

Note that the s and p parameters duplicate the P-line in the input file. These numbers have to
be identical; otherwise the program will exit with an error message.

Parameters for the hidden Markov model Baum-Welch:

r |P Rounds of EM; 30 is generally sufficient to achieve convergence, but for quick
analyses, shorter numbers can be chosen

a |P average factor of the insertion/deletion state to X

m | P Minimum number of probes covering each CNV

d |P Minimum distance between two CNVs

F | F Run second hmm to improve estimate of p-values

H |F Run the program as a classical hmm with one transition matrix for all locations,
uses the Viterbi algorithm to call.

B |F No preset factor for the insertion/deletion state; if this is set, any value of a is
ignored

Parameters for CNV-calling

sets the minimum frequency threshold at which a CNP is called at to X.

Flag to allow overlap between CNVs of the same type

Cleanup: Remove all singletons after analysis

<|O|0|*

M (M| |o

Viterbi algorithm used to infer carrier status

General Parameters:

f F Fast analysis, uses more memory
o |P output file --- name of the output file; default: hmmout.txt
h | F help; a quick overview over these options

Parameter Choices

To identify CNVs without too many false positives, several parameters have to be set: Most
important are the minimum length of each CNV and the mean signal of a CNV.

m

The prime method for reducing the number of false inferences, a minimum length of
each CNV can be set using the —m option. The algorithm forces all CNV to cover at least
X probes where X is the number set behind m. Computation time increases with m, so
m>>20 is not advisable. Appropriate values of m depend on the technology used to
generate the intensity data. The algorithm will not automatically miss all CNVs that are
shorter than the minimum length; however the boundaries will be set wrong.

Setting the minimum distance between two consecutive CNVs (d option) should make
it less likely that big CNVs are cut in two. However, it also increases computation time.

Prior probability of a CNV starting at a given locus. Setting higher values of P reduces
the number of false positives. Below are some simulated false positive numbers for
different values of m and P for s=100, p=10,000.

m 5 10 5 10 5 10 5 10
P le-2 | le-2 | 5e-3 | 5e-3 | 1e-3 | 1e-3 | 5e-4 | 5e-4
Viterbi FP | 18 11 8 6 2 1 1 1
Joint FP 0 0 0 0 0 0 0 0

Setting the mean signal intensities to
as=agtXo a>=ap-X0o,

where o is the standard deviation of the hybridization signal for estimating the
transition matrix.

If a parameter is set with -a, the program can be run with the -F flag to run a second
Baum-Welch algorithm that keeps the transition matrix and estimates more

appropriate values of ay, a,. Using this option improves the estimates of carrier status
and the Viterbi algorithm.

If a parameter X is set with —a, the program can be sped up by setting the —f flag. This
will increase the memory requirement but speed up the program.

Four models of signal distribution are selected by adding a number after the —T option.

1 binary

2 Normally distributed date

3 t-distributed date with 4 degrees of freedom

4 Distributed as a mixture of two normal distributions with identical means

5 Insert single point probabilities of copy number status directly. See below for
more details on this option.

If the empirical signal distributions for option 5 are not available, we have generally
made the best experiences using the mixture of two normal distributions.

This Baum-Welch algorithm can be run to also estimate (ao, a; a,) (option B). However
for most datasets, this will result in fitting to noise in the baseline distribution rather
than in detecting actual CNVs.

For calling CNVs after the transmission matrix in the probabilistic algorithm, the
program considers all pairs of markers with transition probability > X, set with —tX. This
is roughly consistent with setting the minimum population frequency of an inferred
CNV to X. Setting this parameter high can screen out a lot of true positives, especially
when the a parameter is set high.

CNV status will also be estimated using the Viterbi algorithm. This will create a second
output file containing calls based on these calculations.

Output

The program produces ongoing output on the standard output (usually the screen). It also
summarizes all results into several output files. In the following we first explain the standard
output and the individual files produced. We show snippets of output files generated by the
same analysis as examples.

Standard output

The Standard output consists of 3 segments, the input options, the summaries of the Baum-
Welch algorithm and a summary of inferred CNVs.

The first part is a printout of some of your input options.

Following that are summaries from every round of the Baum-Welch algorithm, starting with
the line Initializing HMM and ending with Forwards-Backwards algorithm

finnished. The information presented her can usually be ignored. How to use this output to
improve program performance is described below.
The next block titled Heuristic

CNV cal ling gives an overview of CNV A running number of the detected indel
the CNVs inferred with the calling Type Whether the CNV is a duplication (type
heuristic. The table to the right shows 1) or a deletion (type 2).

the meaning of each summary start first probe covered by the CNV

statistic. length Total number of probes covered by the
The last block titled Viterbi CNV

summary is only generated if the -V frequency | Probability of transitioning into the CNV

option is used. Each line represents one CNV. As the Viterbi-algorithm analyzes one individual
at a time, each CNV is called in one individual at a time. The output lists the individual, the
start and the length of the CNV. The last lines in this output are housekeeping messages
reflecting an orderly termination of the program.

Main output file

The default name of this file is hmmout.txt; it can be changed using the -o option. The file
starts with a paragraph listing input file, time and program version used. Then it displays the
mean signal for each state and in the next line the standard deviation. Each line after that
shows one inferred CNV. The first 5 elements of that line show basic statistics for the Indel

(see table).
After this, each number in the line shows the carrier probability for one individual in the
Ve N sample. The example below
shows the output for one
Indel 2 type 1 start probe 2796 duplication assessed in a sample

length 10 frequency 0.087 Carrier

status: 0.78 0.00 0.00 0.85 0.00 of 15 individuals. Individuals 1

0.00 0.00 0.00 0.00 0.04 0.00 0.00 and 4 have evidence for
1.00 0.00 0.00 segregating the duplication
S ~/ (P=0.78 and P=0.85). Individual

10 has only little evidence (P=0.04) while individual 13 has strong evidence (P=1.0)

Support file

4 N
CNV 2 type 1
0.78: 0.81 0.94 0.85 0.04 0.92 0.34 0.85 0.96 0.04 0.56 av:0.63
0.00: 0.66 0.63 0.34 0.50 0.17 0.76 0.15 0.08 0.28 0.21 av:0.38

Q =4

The default name of this file is support_hmmout.txt; the second part of the name is set using
the -o option. This large file can serve as a sanity check on generated results. It lists the signal
intensities for each individual in CNV areas summarized in the main output file. CNVs are listed
in the same order as in hmmout.txt. Each line in this file represents one individual. The first

number in each line shows the probability of this individual carrying the CNV. After the colon,
the program lists the intensities of all probes covered by this CNV and the last column shows
the average intensity. The example here shows the two lines corresponding to the first two
individuals in the figure above.

Viterbi output

The default name of this file is vitt_hmmout.txt; the second part of the name is set using the -
o option. This file is only generated, if the -V option is selected. The first paragraph lists input
file, time and program version used. The next line lists the order of all probes that have been
inferred to be copy-number variable in at least one individual. Each of the following lines
represents one individual, showing the copy number status estimated at the probe. the

r N\

1238 1239 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 3695
0 0 1 1 1 1 1 1 1 1 0 0 0

& -/
example shows parts of the position line and the copy number line for individual 1. similar to
the output.txt file the individual is inferred to carry a CNV starting at probe 2796. However,
other than in the overall analysis, the Viterbi-algorithm estimates the CNV to only cover 8
probes; probe 2804 is estimated to not be copy number variable.

Optimizing CopyMap

Then the steps of the hmm are shown. The important part here are the first two numbers, as
they show the likelihood of the hmm (it is the first number *10”second number). This number
should not change much for the last few steps of the hmm, otherwise r is too low. The next
number is the proportion of the chain that is estimated to be not part of a CNV. If this ever
drops below 0.98, you probably have P or m set too low.

The other numbers are not important.

This allows you for example to notice if a particular probe produces a lot of outlier values or if
the presence or absence of a CNP is inferred because of a few probes or if all the probes show
a signal.

Additional Options

-

#short toy example 2 for T5 option
P33

L 12138 12390 12505

M 9999

#See above for the P L M options

N mousel mouse2 mouse3

#Names

0.90 0.03 0.07 0807022070200 0.88 0.03 0.09

0.55 0.44 0.01

0.83 0.17 0.00 0.88 0.08 0.04
0.44 0.02 0.54 022270.0070.78 0.31 0.01 0.68

Example 2: Input file of emission probabilities of a hmm
with 3 states. Each shaded area contains the probabilities

\ of states 1, 2, 3 for one probe.

N

)

In many cases,
assuming a
distribution for the
underlying signal is
guestionable at best.
Alternatively, it may
be possible to use
data with known CNV
status to estimate
the signal
distributions under
that status and use
these empirical
distributions in the
hmm. This is done
setting the

parameter T5. Then the program will expect an input file as presented in Example 2,
containing the probabilities for each state at that position. Note that the probabilities for all
states at one probe add up to one. If they don’t’ the program exits with an error message. Not
that you can only use this option if you do not have more than one signal per probe. The first
probability for each probe is the probability of baseline status. As there is limited memory
assigned to each input line, the program is not able to read in more than 3 digits per

probability.

—

—t

