Calendar of Events

Ann Arbor MI 03-22-2018 03-22-2018

We evaluate the feasibility of using a biological sample's transcriptome to predict its genome-wide regulatory element activities measured by DNase I hypersensitivity (DH). We develop BIRD, Big Data Regression for predicting DH, to handle this high-dimensional problem. Applying BIRD to the Encyclopedia of DNA Elements (ENCODE) data, we found that to a large extent gene expression predicts DH, and information useful for prediction is contained in the whole transcriptome rather than limited to a regulatory element's neighboring genes. We show applications of BIRD-predicted DH in predicting transcription factor-binding sites (TFBSs), turning publicly available gene expression samples in Gene Expression Omnibus (GEO) into a regulome database, predicting differential regulatory element activities, and facilitating regulome data analyses by serving as pseudo-replicates. Besides improving our understanding of the regulome-transcriptome relationship, this study suggests that transcriptome-based prediction can provide a useful new approach for regulome mapping.

CANCELED: Global prediction of gene regulatory landscape using gene expression

Hongkai Ji, Ph.D. - Associate Professor, Graduate Program Director of Department of Biostatistics, John Hopkins Bloomberg School of Public Health

March 22, 2018
3:30 PM - 5:00 PM
1690 SPH I
1415 Washington Heights
Ann Arbor, MI 48109-2029

Sponsored by: Department of Biostatistics
Contact Information: Zhenke Wu, Ph.D. (zhenkewu@umich.edu)

We evaluate the feasibility of using a biological sample's transcriptome to predict its genome-wide regulatory element activities measured by DNase I hypersensitivity (DH). We develop BIRD, Big Data Regression for predicting DH, to handle this high-dimensional problem. Applying BIRD to the Encyclopedia of DNA Elements (ENCODE) data, we found that to a large extent gene expression predicts DH, and information useful for prediction is contained in the whole transcriptome rather than limited to a regulatory element's neighboring genes. We show applications of BIRD-predicted DH in predicting transcription factor-binding sites (TFBSs), turning publicly available gene expression samples in Gene Expression Omnibus (GEO) into a regulome database, predicting differential regulatory element activities, and facilitating regulome data analyses by serving as pseudo-replicates. Besides improving our understanding of the regulome-transcriptome relationship, this study suggests that transcriptome-based prediction can provide a useful new approach for regulome mapping.