Description: A survey of key algorithms for statistical computing and its applications in Biostatistics. The course will cover fundamental computational techniques for dynamic programming, sorting, and searching, as well statistical methods for random number generation, numerical integration, function optimization, Markov-Chain Monte Carlo, and the E-M algorithm. Enables students to understand numerical results produced by a computer and to implement their own statistical methods.
Prerequisites: Biostat 601, Biostat 602, Biostat 666 or Perm. Instr.
Description: Advanced topics in quantitative genetics with emphasis on models for gene mapping, pedigree analysis, reconstruction of evolutionary trees, and molecular genetics experiments, computational mathematics, and statistical techniques such as Chen-Stein Poisson approximations, hidden Markov chains, and the EM algorithm introduced as needed.