Reference: Boonstra, Philip S. and Barbaro, Ryan P., "Incorporating Historical Models with Adaptive
Bayesian Updates" (2018) Biostatistics https://doi.org/10.1093/biostatistics/kxy053
Reference: Wu, Z., Deloria-Knoll, M. and Zeger, S.L., 2016. Nested partially latent class models
for dependent binary data; estimating disease etiology. Biostatistics, 18(2), pp.200-213.
<doi:10.1093/biostatistics/kxw037>.
Bama
Mediation analysis in the presence of high-dimensional mediators based on the potential
outcome framework. Bayesian Mediation Analysis (BAMA), developed by Song et al (2018)
<doi:10.1101/467399>.
Reference: “Methods to account for uncertainty in latent class assignments when using latent
classes as predictors in regression models, with application to acculturation strategy
measures” (2020) In press at Epidemiology. doi:10.1097/EDE.0000000000001139
MMCR
Bayesian graphical regression for multiple myeloma.
Reference: Wu, Z., Casciola-Rosen, L., Rosen, A. and Zeger, S.L., 2018. A Bayesian approach
to restricted latent class models for scientifically-structured clustering of multivariate
binary outcomes. arXiv preprint arXiv:1808.08326. <doi:10.1101/400192>.
rstap
Spatial Temporal Aggregated Predictor Models via STAN.
Reference: Peterson, Adam, and Brisa Sanchez. "rstap: An R Package for Spatial Temporal Aggregated
Predictor Models." arXiv preprint arXiv:1812.10208 (2018).
sbams
Bayesian model selection in complex linear systems.
Reference: Wei, B., Braun, T.M., Tamura, R.N. and Kidwell, K.M., 2018. A Bayesian analysis of
small n sequential multiple assignment randomized trials (snSMARTs). Statistics in
Medicine, 37(26), pp.3723-3732.
spotgear
Package for fitting Bayesian two-dimensional image dewarping models and estimating
disease subsets and signatures.
Reference: Wu, Z., Casciola-Rosen, L., Shah, A.A., Rosen, A. and Zeger, S.L., 2017. Estimating
autoantibody signatures to detect autoimmune disease patient subsets. Biostatistics,
20(1), pp.30-47. <doi:10.1093/biostatistics/kxx061>.
STGP
This package focus on spatial variable selection for scalar-on-image regression. It
uses a new class of Bayesian nonparametric models, soft-thresholded Gaussian processes
and the developed efficient posterior computation algorithms.